Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 82(2): 479-491.e7, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34963054

RESUMO

Genetically encoded biosensors are powerful tools to monitor cellular behavior, but the difficulty in generating appropriate reporters for chromatin factors hampers our ability to dissect epigenetic pathways. Here, we present TRACE (transgene reporters across chromatin environments), a high-throughput, genome-wide technique to generate fluorescent human reporter cell lines responsive to manipulation of epigenetic factors. By profiling GFP expression from a large pool of individually barcoded lentiviral integrants in the presence and absence of a perturbation, we identify reporters responsive to pharmacological inhibition of the histone lysine demethylase LSD1 and genetic ablation of the PRC2 subunit SUZ12. Furthermore, by manipulating the HIV-1 host factor LEDGF through targeted deletion or fusion to chromatin reader domains, we alter lentiviral integration site preferences, thus broadening the types of chromatin examined by TRACE. The phenotypic reporters generated through TRACE will allow the genetic interrogation of a broad range of epigenetic pathways, furthering our mechanistic understanding of chromatin biology.


Assuntos
Técnicas Biossensoriais , Epigênese Genética , Genes Reporter , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Lentivirus/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Montagem e Desmontagem da Cromatina , Epigenoma , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Células HeLa , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Humanos , Lentivirus/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Células THP-1 , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Life Sci Alliance ; 5(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34663690

RESUMO

Chd7 encodes an ATP-dependent chromatin remodeler which has been shown to target specific genomic loci and alter local transcription potentially by remodeling chromatin structure. De novo mutations in CHD7 are the major cause of CHARGE syndrome which features multiple developmental defects. We examined whether nuclear RNAs might contribute to its targeting and function and identified a preferential interaction between CHD7 and lncRNAs derived from HERVH loci in pluripotent stem cells. Knockdown of HERVH family lncRNAs using LNAs or knockout of an individual copy of HERVH by CRISPR-Cas9 both resulted in increased binding of CHD7 and increased levels of H3K27ac at a subset of enhancers. Depletion of HERVH family RNAs led to the activation of multiple genes. CHD7 bound HERVH RNA with high affinity but low specificity and this interaction decreased the ability of CHD7 to bind and remodel nucleosomes. We present a model in which HERVH lncRNAs act as a decoy to modulate the dynamics of CHD7 binding to enhancers in pluripotent cells and the activation of numerous genes that might impact the differentiation process.


Assuntos
Montagem e Desmontagem da Cromatina , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Retrovirus Endógenos/genética , Regulação da Expressão Gênica , RNA Longo não Codificante , RNA Viral , Alelos , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Elementos Facilitadores Genéticos , Edição de Genes , Técnicas de Silenciamento de Genes , Histonas/metabolismo , Humanos , Modelos Biológicos , Mutação , Proteínas de Ligação a RNA/metabolismo
3.
Mol Cell ; 81(22): 4677-4691.e8, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34637753

RESUMO

The CBX family of proteins is central to proper mammalian development via key roles in Polycomb-mediated maintenance of repression. CBX proteins in differentiated lineages have chromatin compaction and phase separation activities that might contribute to maintaining repressed chromatin. The predominant CBX protein in pluripotent cells, CBX7, lacks the domain required for these activities. We inserted this functional domain into CBX7 in embryonic stem cells (ESCs) to test the hypothesis that it contributes a key epigenetic function. ESCs expressing this chimeric CBX7 were impaired in their ability to properly form embryoid bodies and neural progenitor cells and showed reduced activation of lineage-specific genes across differentiation. Neural progenitors exhibited a corresponding inappropriate maintenance of Polycomb binding at neural-specific loci over the course of differentiation. We propose that a switch in the ability to compact and phase separate is a central aspect of Polycomb group function during the transition from pluripotency to differentiated lineages.


Assuntos
Cromatina/química , Proteínas de Drosophila/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula , Drosophila/metabolismo , Corpos Embrioides , Células-Tronco Embrionárias/citologia , Epigênese Genética , Perfilação da Expressão Gênica , Genômica , Células HeLa , Humanos , Espectrometria de Massas , Camundongos , Microscopia Eletrônica , Neurônios/metabolismo , Peptídeos/química , Fenótipo , Células-Tronco Pluripotentes/citologia , Complexo Repressor Polycomb 1/metabolismo , Ligação Proteica , Domínios Proteicos , Proteínas Recombinantes de Fusão/química , Células-Tronco/citologia
4.
Development ; 148(7)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33688077

RESUMO

Polycomb repressive complex 2 (PRC2) catalyzes methylation of histone H3 on lysine 27 and is required for normal development of complex eukaryotes. The nature of that requirement is not clear. H3K27me3 is associated with repressed genes, but the modification is not sufficient to induce repression and, in some instances, is not required. We blocked full methylation of H3K27 with both a small molecule inhibitor, GSK343, and by introducing a point mutation into EZH2, the catalytic subunit of PRC2, in the mouse CJ7 cell line. Cells with substantively decreased H3K27 methylation differentiate into embryoid bodies, which contrasts with EZH2 null cells. PRC2 targets had varied requirements for H3K27me3, with a subset that maintained normal levels of repression in the absence of methylation. The primary cellular phenotype of blocked H3K27 methylation was an inability of altered cells to maintain a differentiated state when challenged. This phenotype was determined by H3K27 methylation in embryonic stem cells through the first 4 days of differentiation. Full H3K27 methylation therefore was not necessary for formation of differentiated cell states during embryoid body formation but was required to maintain a stable differentiated state.


Assuntos
Diferenciação Celular/fisiologia , Corpos Embrioides/metabolismo , Histonas/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Linhagem Celular , Células-Tronco Embrionárias/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Indazóis/farmacologia , Lisina , Metilação/efeitos dos fármacos , Camundongos , Fenótipo , Complexo Repressor Polycomb 2/genética , Piridonas/farmacologia , Transcriptoma
5.
J Biol Chem ; 296: 100202, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33334895

RESUMO

Elongin A (EloA) is an essential transcription factor that stimulates the rate of RNA polymerase II (Pol II) transcription elongation in vitro. However, its role as a transcription factor in vivo has remained underexplored. Here we show that in mouse embryonic stem cells, EloA localizes to both thousands of Pol II transcribed genes with preference for transcription start site and promoter regions and a large number of active enhancers across the genome. EloA deletion results in accumulation of transcripts from a subset of enhancers and their adjacent genes. Notably, EloA does not substantially enhance the elongation rate of Pol II in vivo. We also show that EloA localizes to the nucleoli and associates with RNA polymerase I transcribed ribosomal RNA gene, Rn45s. EloA is a highly disordered protein, which we demonstrate forms phase-separated condensates in vitro, and truncation mutations in the intrinsically disordered regions (IDR) of EloA interfere with its targeting and localization to the nucleoli. We conclude that EloA broadly associates with transcribed regions, tunes RNA Pol II transcription levels via impacts on enhancer RNA synthesis, and interacts with the rRNA producing/processing machinery in the nucleolus. Our work opens new avenues for further investigation of the role of this functionally multifaceted transcription factor in enhancer and ribosomal RNA biology.


Assuntos
Elonguina/metabolismo , Elementos Facilitadores Genéticos , Células-Tronco Embrionárias Murinas/metabolismo , RNA/genética , Ativação Transcricional , Animais , Linhagem Celular , Elonguina/genética , Deleção de Genes , Camundongos , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Sítio de Iniciação de Transcrição
6.
Cell Rep ; 31(6): 107629, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32402276

RESUMO

Many proteins that are needed for progression through S-phase are produced from transcripts that peak in the S-phase, linking temporal expression of those proteins to the time that they are required in cell cycle. Here, we explore the potential roles of long non-coding RNAs in cell cycle progression. We use a sensitive click-chemistry approach to isolate nascent RNAs in a human cell line, and we identify more than 900 long non-coding RNAs (lncRNAs) whose synthesis peaks during the S-phase. More than 200 of these are long intergenic non-coding RNAs (lincRNAs) with S-phase-specific expression. We characterize three of these lincRNAs by knockdown and find that all three lincRNAs are required for appropriate S-phase progression. We infer that non-coding RNAs are key regulatory effectors during the cell cycle, acting on distinct regulatory networks, and herein, we provide a large catalog of candidate cell-cycle regulatory RNAs.


Assuntos
Ciclo Celular/genética , Perfilação da Expressão Gênica/métodos , RNA Longo não Codificante/genética , Fase S/genética , Humanos
7.
Proc Natl Acad Sci U S A ; 116(40): 20033-20042, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31527256

RESUMO

Fine mapping and validation of genes causing ß cell failure from susceptibility loci identified in type 2 diabetes genome-wide association studies (GWAS) poses a significant challenge. The VPS13C-C2CD4A-C2CD4B locus on chromosome 15 confers diabetes susceptibility in every ethnic group studied to date. However, the causative gene is unknown. FoxO1 is involved in the pathogenesis of ß cell dysfunction, but its link to human diabetes GWAS has not been explored. Here we generated a genome-wide map of FoxO1 superenhancers in chemically identified ß cells using 2-photon live-cell imaging to monitor FoxO1 localization. When parsed against human superenhancers and GWAS-derived diabetes susceptibility alleles, this map revealed a conserved superenhancer in C2CD4A, a gene encoding a ß cell/stomach-enriched nuclear protein of unknown function. Genetic ablation of C2cd4a in ß cells of mice phenocopied the metabolic abnormalities of human carriers of C2CD4A-linked polymorphisms, resulting in impaired insulin secretion during glucose tolerance tests as well as hyperglycemic clamps. C2CD4A regulates glycolytic genes, and notably represses key ß cell "disallowed" genes, such as lactate dehydrogenase A We propose that C2CD4A is a transcriptional coregulator of the glycolytic pathway whose dysfunction accounts for the diabetes susceptibility associated with the chromosome 15 GWAS locus.


Assuntos
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Predisposição Genética para Doença , Variação Genética , Células Secretoras de Insulina/metabolismo , Insulina/biossíntese , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Animais , Sequência de Bases , Sítios de Ligação , Biomarcadores , Sequência Conservada , Elementos Facilitadores Genéticos , Proteína Forkhead Box O1/metabolismo , Estudos de Associação Genética , Humanos , Camundongos , Modelos Biológicos , Motivos de Nucleotídeos , Ligação Proteica
8.
JCI Insight ; 52019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-31120862

RESUMO

Diabetic ß cell failure is associated with ß cell dedifferentiation. To identify effector genes of dedifferentiation, we integrated analyses of histone methylation as a surrogate of gene activation status and RNA expression in ß cells sorted from mice with multiparity-induced diabetes. Interestingly, only a narrow subset of genes demonstrated concordant changes to histone methylation and RNA levels in dedifferentiating ß cells. Notable among them was the α cell signature gene Gc, encoding a vitamin D-binding protein. While diabetes was associated with Gc induction, Gc-deficient islets did not induce ß cell dedifferentiation markers and maintained normal ex vivo insulin secretion in the face of metabolic challenge. Moreover, Gc-deficient mice exhibited a more robust insulin secretory response than normal controls during hyperglycemic clamps. The data are consistent with a functional role of Gc activation in ß cell dysfunction, and indicate that multiparity-induced diabetes is associated with altered ß cell fate.


Assuntos
Desdiferenciação Celular/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Glucagon/metabolismo , Células Secretoras de Insulina/metabolismo , Animais , Desdiferenciação Celular/genética , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2/genética , Dieta Hiperlipídica/efeitos adversos , Epigenômica , Feminino , Proteína Forkhead Box O1/genética , Regulação da Expressão Gênica , Glucagon , Células Secretoras de Glucagon/patologia , Histonas , Insulina/metabolismo , Células Secretoras de Insulina/patologia , Masculino , Camundongos , Camundongos Knockout , Paridade , Transcriptoma , Proteína de Ligação a Vitamina D/genética , Proteína de Ligação a Vitamina D/metabolismo
9.
Mol Cell Endocrinol ; 471: 22-32, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28554803

RESUMO

Nuclear receptors regulate gene expression by differentially binding to coactivators or corepressors in a ligand-dependent manner, which further recruits a set of epigenome-modifying enzymes that remodel chromatin conformation. Histone acetylation is a major epigenomic change controlled by histone acetyltransferases (HATs) and histone deacetylases (HDACs). HDAC3 is the only HDAC that confers the enzymatic activity to the complexes nucleated by nuclear receptor corepressors NCoR and SMRT. To address the metabolic function of HDAC3, we have deleted it specifically in mouse skeletal muscles. We have performed the following omics profiling in skeletal muscles of these mice: (1) RNA-seq profiling of total RNA; (2) Global nuclear run-on (GRO-seq) analysis of nascent RNAs; (3) Chromatin immuno-precipitation (ChIP-seq) of HDAC3 at both early evening and early morning; (4) proteomics profiling with mass spectrometry; (5) snap-shot metabolomics profiling of water-soluble metabolites at the basal condition; (6) snap-shot metabolomics profiling of lipid species at the basal condition; (7) kinetic fluxomics analysis of glucose utilization using 13C6-glucose In vivo during treadmill running exercise. These approaches have provided several novel insights into how nuclear receptors regulate circadian rhythm of skeletal muscle fuel metabolism, which has been published elsewhere. Here we present the original datasets and technical details during the execution, analysis, and interpretation of these omics studies.


Assuntos
Genômica/métodos , Histona Desacetilases/metabolismo , Músculo Esquelético/metabolismo , Correpressor 1 de Receptor Nuclear/metabolismo , Animais , Epigênese Genética , Cinética , Metabolismo dos Lipídeos , Análise do Fluxo Metabólico , Metabolômica , Camundongos Knockout , Proteômica , Transcriptoma/genética
10.
Nat Commun ; 8(1): 607, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28928360

RESUMO

In melanoma, therapies with inhibitors to oncogenic BRAFV600E are highly effective but responses are often short-lived due to the emergence of drug-resistant tumor subpopulations. We describe here a mechanism of acquired drug resistance through the tumor microenvironment, which is mediated by human tumor-associated B cells. Human melanoma cells constitutively produce the growth factor FGF-2, which activates tumor-infiltrating B cells to produce the growth factor IGF-1. B-cell-derived IGF-1 is critical for resistance of melanomas to BRAF and MEK inhibitors due to emergence of heterogeneous subpopulations and activation of FGFR-3. Consistently, resistance of melanomas to BRAF and/or MEK inhibitors is associated with increased CD20 and IGF-1 transcript levels in tumors and IGF-1 expression in tumor-associated B cells. Furthermore, first clinical data from a pilot trial in therapy-resistant metastatic melanoma patients show anti-tumor activity through B-cell depletion by anti-CD20 antibody. Our findings establish a mechanism of acquired therapy resistance through tumor-associated B cells with important clinical implications.Resistance to BRAFV600E inhibitors often occurs in melanoma patients. Here, the authors describe a potential mechanism of acquired drug resistance mediated by tumor-associated B cells-derived IGF-1.


Assuntos
Antineoplásicos/uso terapêutico , Linfócitos B/metabolismo , Resistencia a Medicamentos Antineoplásicos , Fator de Crescimento Insulin-Like I/metabolismo , Linfócitos do Interstício Tumoral/metabolismo , Melanoma/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias Cutâneas/tratamento farmacológico , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Sobrevivência Celular , Cisplatino/uso terapêutico , Fator 2 de Crescimento de Fibroblastos/metabolismo , Humanos , Técnicas In Vitro , Melanoma/genética , Paclitaxel/uso terapêutico , Projetos Piloto , Proteínas Proto-Oncogênicas B-raf/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Neoplasias Cutâneas/genética , Microambiente Tumoral
11.
Nat Commun ; 8(1): 549, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28916805

RESUMO

The histone deacetylase HDAC3 is a critical mediator of hepatic lipid metabolism, and liver-specific deletion of HDAC3 leads to fatty liver. To elucidate the underlying mechanism, here we report a method of cross-linking followed by mass spectrometry to define a high-confidence HDAC3 interactome in vivo that includes the canonical NCoR-HDAC3 complex as well as Prospero-related homeobox 1 protein (PROX1). HDAC3 and PROX1 co-localize extensively on the mouse liver genome, and are co-recruited by hepatocyte nuclear factor 4α (HNF4α). The HDAC3-PROX1 module controls the expression of a gene program regulating lipid homeostasis, and hepatic-specific ablation of either component increases triglyceride content in liver. These findings underscore the importance of specific combinations of transcription factors and coregulators in the fine tuning of organismal metabolism.HDAC3 is a critical mediator of hepatic lipid metabolism and its loss leads to fatty liver. Here, the authors characterize the liver HDAC3 interactome in vivo, provide evidence that HDAC3 interacts with PROX1, and show that HDAC3 and PROX1 control expression of genes regulating lipid homeostasis.


Assuntos
Fator 4 Nuclear de Hepatócito/metabolismo , Histona Desacetilases/metabolismo , Proteínas de Homeodomínio/metabolismo , Fígado/metabolismo , Triglicerídeos/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Regulação da Expressão Gênica , Fator 4 Nuclear de Hepatócito/genética , Histona Desacetilases/genética , Proteínas de Homeodomínio/genética , Lipídeos/genética , Masculino , Camundongos Knockout , Mapeamento de Interação de Proteínas/métodos , Proteínas Supressoras de Tumor/genética
12.
Genes Dev ; 31(12): 1202-1211, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28747429

RESUMO

Liver lipid metabolism is under intricate temporal control by both the circadian clock and feeding. The interplay between these two mechanisms is not clear. Here we show that liver-specific depletion of nuclear receptors RORα and RORγ, key components of the molecular circadian clock, up-regulate expression of lipogenic genes only under fed conditions at Zeitgeber time 22 (ZT22) but not under fasting conditions at ZT22 or ad libitum conditions at ZT10. RORα/γ controls circadian expression of Insig2, which keeps feeding-induced SREBP1c activation under check. Loss of RORα/γ causes overactivation of the SREBP-dependent lipogenic response to feeding, exacerbating diet-induced hepatic steatosis. These findings thus establish ROR/INSIG2/SREBP as a molecular pathway by which circadian clock components anticipatorily regulate lipogenic responses to feeding. This highlights the importance of time of day as a consideration in the treatment of liver metabolic disorders.


Assuntos
Relógios Circadianos/genética , Regulação da Expressão Gênica , Lipogênese/genética , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Animais , Comportamento Alimentar/fisiologia , Técnicas de Inativação de Genes , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Ativação Transcricional
13.
J Clin Invest ; 127(4): 1451-1462, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28240605

RESUMO

Obesity causes insulin resistance, and PPARγ ligands such as rosiglitazone are insulin sensitizing, yet the mechanisms remain unclear. In C57BL/6 (B6) mice, obesity induced by a high-fat diet (HFD) has major effects on visceral epididymal adipose tissue (eWAT). Here, we report that HFD-induced obesity in B6 mice also altered the activity of gene regulatory elements and genome-wide occupancy of PPARγ. Rosiglitazone treatment restored insulin sensitivity in obese B6 mice, yet, surprisingly, had little effect on gene expression in eWAT. However, in subcutaneous inguinal fat (iWAT), rosiglitazone markedly induced molecular signatures of brown fat, including the key thermogenic gene Ucp1. Obesity-resistant 129S1/SvImJ mice (129 mice) displayed iWAT browning, even in the absence of rosiglitazone. The 129 Ucp1 locus had increased PPARγ binding and gene expression that were preserved in the iWAT of B6x129 F1-intercrossed mice, with an imbalance favoring the 129-derived alleles, demonstrating a cis-acting genetic difference. Thus, B6 mice have genetically defective Ucp1 expression in iWAT. However, when Ucp1 was activated by rosiglitazone, or by iWAT browning in cold-exposed or young mice, expression of the B6 version of Ucp1 was no longer defective relative to the 129 version, indicating epigenomic rescue. These results provide a framework for understanding how environmental influences like drugs can affect the epigenome and potentially rescue genetically determined disease phenotypes.


Assuntos
Epigênese Genética , Obesidade/metabolismo , PPAR gama/fisiologia , Animais , Dieta Hiperlipídica/efeitos adversos , Hipoglicemiantes/farmacologia , Gordura Intra-Abdominal/metabolismo , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Ligação Proteica , Elementos Reguladores de Transcrição , Rosiglitazona , Gordura Subcutânea Abdominal/metabolismo , Tiazolidinedionas/farmacologia , Ativação Transcricional , Transcriptoma , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
14.
Mol Metab ; 6(1): 30-37, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28123935

RESUMO

OBJECTIVE: Histone deacetylases are epigenetic regulators known to control gene transcription in various tissues. A member of this family, histone deacetylase 3 (HDAC3), has been shown to regulate metabolic genes. Cell culture studies with HDAC-specific inhibitors and siRNA suggest that HDAC3 plays a role in pancreatic ß-cell function, but a recent genetic study in mice has been contradictory. Here we address the functional role of HDAC3 in ß-cells of adult mice. METHODS: An HDAC3 ß-cell specific knockout was generated in adult MIP-CreERT transgenic mice using the Cre-loxP system. Induction of HDAC3 deletion was initiated at 8 weeks of age with administration of tamoxifen in corn oil (2 mg/day for 5 days). Mice were assayed for glucose tolerance, glucose-stimulated insulin secretion, and islet function 2 weeks after induction of the knockout. Transcriptional functions of HDAC3 were assessed by ChIP-seq as well as RNA-seq comparing control and ß-cell knockout islets. RESULTS: HDAC3 ß-cell specific knockout (HDAC3ßKO) did not increase total pancreatic insulin content or ß-cell mass. However, HDAC3ßKO mice demonstrated markedly improved glucose tolerance. This improved glucose metabolism coincided with increased basal and glucose-stimulated insulin secretion in vivo as well as in isolated islets. Cistromic and transcriptomic analyses of pancreatic islets revealed that HDAC3 regulates multiple genes that contribute to glucose-stimulated insulin secretion. CONCLUSIONS: HDAC3 plays an important role in regulating insulin secretion in vivo, and therapeutic intervention may improve glucose homeostasis.


Assuntos
Histona Desacetilases/deficiência , Histona Desacetilases/metabolismo , Células Secretoras de Insulina/enzimologia , Insulina/metabolismo , Animais , Glucose/metabolismo , Inibidores de Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Insulina/sangue , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Pâncreas/citologia , Pâncreas/enzimologia , Pâncreas/metabolismo , Deleção de Sequência
15.
Nat Med ; 23(2): 223-234, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27991918

RESUMO

Type 2 diabetes and insulin resistance are associated with reduced glucose utilization in the muscle and poor exercise performance. Here we find that depletion of the epigenome modifier histone deacetylase 3 (HDAC3) specifically in skeletal muscle causes severe systemic insulin resistance in mice but markedly enhances endurance and resistance to muscle fatigue, despite reducing muscle force. This seemingly paradoxical phenotype is due to lower glucose utilization and greater lipid oxidation in HDAC3-depleted muscles, a fuel switch caused by the activation of anaplerotic reactions driven by AMP deaminase 3 (Ampd3) and catabolism of branched-chain amino acids. These findings highlight the pivotal role of amino acid catabolism in muscle fatigue and type 2 diabetes pathogenesis. Further, as genome occupancy of HDAC3 in skeletal muscle is controlled by the circadian clock, these results delineate an epigenomic regulatory mechanism through which the circadian clock governs skeletal muscle bioenergetics. These findings suggest that physical exercise at certain times of the day or pharmacological targeting of HDAC3 could potentially be harnessed to alter systemic fuel metabolism and exercise performance.


Assuntos
Histona Desacetilases/genética , Resistência à Insulina/genética , Metabolismo dos Lipídeos/genética , Fadiga Muscular/genética , Força Muscular/genética , Músculo Esquelético/metabolismo , Condicionamento Físico Animal , Resistência Física/genética , AMP Desaminase/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Western Blotting , Composição Corporal , Ritmo Circadiano/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético , Epigênese Genética , Técnicas de Silenciamento de Genes , Técnica Clamp de Glucose , Código das Histonas/genética , Camundongos , Proteômica , Reação em Cadeia da Polimerase em Tempo Real
16.
Cell Metab ; 24(6): 863-874, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27866836

RESUMO

Liver fat accumulation precedes non-alcoholic steatohepatitis, an increasing cause of end-stage liver disease. Histone deacetylase 3 (HDAC3) is required for hepatic triglyceride homeostasis, and sterol regulatory element binding protein (SREBP) regulates the lipogenic response to feeding, but the crosstalk between these pathways is unknown. Here we show that inactivation of SREBP by hepatic deletion of SREBP cleavage activating protein (SCAP) abrogates the increase in lipogenesis caused by loss of HDAC3, but fatty acid oxidation remains defective. This combination leads to accumulation of lipid intermediates and to an energy drain that collectively cause oxidative stress, inflammation, liver damage, and, ultimately, synthetic lethality. Remarkably, this phenotype is prevented by ectopic expression of nuclear SREBP1c, revealing a surprising benefit of de novo lipogenesis and triglyceride synthesis in preventing lipotoxicity. These results demonstrate that HDAC3 and SCAP control symbiotic pathways of liver lipid metabolism that are critical for suppression of lipotoxicity.


Assuntos
Histona Desacetilases/metabolismo , Lipídeos/toxicidade , Fígado/metabolismo , Fígado/patologia , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Animais , Sequência de Bases , Ácidos Graxos/metabolismo , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Glucose/farmacologia , Inflamação/patologia , Lipogênese/efeitos dos fármacos , Lipogênese/genética , Fígado/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Transcrição Gênica/efeitos dos fármacos , Triglicerídeos/metabolismo
17.
Mol Metab ; 5(10): 948-958, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27689007

RESUMO

OBJECTIVE: Genetic background largely contributes to the complexity of metabolic responses and dysfunctions. Induction of brown adipose features in white fat, known as brown remodeling, has been appreciated as a promising strategy to offset the positive energy balance in obesity and further to improve metabolism. Here we address the effects of genetic background on this process. METHODS: We investigated browning remodeling in a depot-specific manner by comparing the response of C57BL/6J, 129/Sv and FVB/NJ mouse strains to cold. RESULTS: Surprisingly, 129/Sv and FVB/NJ mice showed distinct brown remodeling features despite their similar resistance to metabolic disorders in comparison to the obesity-prone C57BL/6J mice. FVB/NJ mice demonstrated a preference of brown remodeling in inguinal subcutaneous white adipose tissue (iWAT), whereas 129/Sv mice displayed robust brown remodeling in visceral epididymal fat (eWAT). We further compared gene expression in different depots by RNA-sequencing and identified Hoxc10 as a novel "brake" of brown remodeling in iWAT. CONCLUSION: Rodent genetic background determines the brown remodeling of different white fat depots. This study provides new insights into the role of genetic variation in fat remodeling in susceptibility to metabolic diseases.

18.
Genes Dev ; 30(14): 1636-44, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27445394

RESUMO

Hepatocyte nuclear factor 6 (HNF6) is required for liver development, but its role in adult liver metabolism is not known. Here we show that deletion of HNF6 in livers of adult C57Bl/6 mice leads to hepatic steatosis in mice fed normal laboratory chow. Although HNF6 is known mainly as a transcriptional activator, hepatic loss of HNF6 up-regulated many lipogenic genes bound directly by HNF6. Many of these genes are targets of the circadian nuclear receptor Rev-erbα, and binding of Rev-erbα at these sites was lost when HNF6 was ablated in the liver. While HNF6 and Rev-erbα coordinately regulate hepatic lipid metabolism, each factor also affects additional gene sets independently. These findings highlight a novel mechanism of transcriptional repression by HNF6 and demonstrate how overlapping and distinct mechanisms of transcription factor function contribute to the integrated physiology of the liver.


Assuntos
Regulação da Expressão Gênica/genética , Fator 6 Nuclear de Hepatócito/genética , Fator 6 Nuclear de Hepatócito/metabolismo , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Fígado/fisiopatologia , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Animais , Fígado Gorduroso/genética , Deleção de Genes , Técnicas de Inativação de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Ligação Proteica/genética
19.
Science ; 348(6242): 1488-92, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-26044300

RESUMO

Circadian and metabolic physiology are intricately intertwined, as illustrated by Rev-erbα, a transcription factor (TF) that functions both as a core repressive component of the cell-autonomous clock and as a regulator of metabolic genes. Here, we show that Rev-erbα modulates the clock and metabolism by different genomic mechanisms. Clock control requires Rev-erbα to bind directly to the genome at its cognate sites, where it competes with activating ROR TFs. By contrast, Rev-erbα regulates metabolic genes primarily by recruiting the HDAC3 co-repressor to sites to which it is tethered by cell type-specific transcription factors. Thus, direct competition between Rev-erbα and ROR TFs provides a universal mechanism for self-sustained control of the molecular clock across all tissues, whereas Rev-erbα uses lineage-determining factors to convey a tissue-specific epigenomic rhythm that regulates metabolism tailored to the specific need of that tissue.


Assuntos
Proteínas CLOCK/genética , Relógios Circadianos/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica , Histona Desacetilases/metabolismo , Metabolismo/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Animais , Fator 6 Nuclear de Hepatócito/metabolismo , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Especificidade de Órgãos , Ligação Proteica , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...